a^2+a^2=40^2

Simple and best practice solution for a^2+a^2=40^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=40^2 equation:



a^2+a^2=40^2
We move all terms to the left:
a^2+a^2-(40^2)=0
We add all the numbers together, and all the variables
2a^2-1600=0
a = 2; b = 0; c = -1600;
Δ = b2-4ac
Δ = 02-4·2·(-1600)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*2}=\frac{0-80\sqrt{2}}{4} =-\frac{80\sqrt{2}}{4} =-20\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*2}=\frac{0+80\sqrt{2}}{4} =\frac{80\sqrt{2}}{4} =20\sqrt{2} $

See similar equations:

| X/2+12=2x-2 | | 2/3+x-1+3/5=0 | | 5x2+15x-20=0 | | 1+6n=8n+15 | | 9y-11=(y+2) | | 6x+14=6+5x | | 2x-8=12=15 | | 1/2(x^2+4)=6 | | -2n/5=7 | | 1-8n=1-4n | | 2x-8=+2 | | 5x^2+10x=73 | | 0.4(x+12)=0.6+3.2 | | 2+6x=5x-5 | | Y=4x(x-5) | | 2y-8y+3y-y-1+5-13=0 | | 4n-3=5n+3 | | -2x+(2x+8)^2=-8 | | 6-x=6x+34 | | 5-2x=1-3x | | 4x+2x+x-15=0 | | 13+10y=-14 | | -2+n=3-4n | | 12(2x−6)+5=23x+9+73x | | 6x-11=5x-7 | | -13.9=-1.1+x/8 | | 12n-9n-6+10=0 | | (2x+6)^2=2x-6 | | 7=4v+3 | | 5+7×=45+3x | | |x-2|-1=5 | | 6-x=3x+17 |

Equations solver categories